Сложные возрастные структуры
Страница 1

Можно указать несколько случаев, когда более сложные и, следовательно, более реалистические возрастные структуры удается описать с помощью модели Маккендрика фон Фёрстера и ее обобщения. Мы не будем предпринимать попыток решить соответствующие уравнения, а ограничимся изложением возможностей, присущих формализму.

Прежде всего, напомним наиболее общую форму – модели в случае одного отдельного вида:

Множество самых различных решений определяется выбором функций D (x, t, т) и В. В дальнейшем мы обсудим лишь несколько принципиальных вариантов. Соображения, развиваемые ниже относительно функции D, могут быть по аналогии перенесены на рождаемость В.

Прежде всего, мы предположим существование явной зависимости от времени. Это позволит учитывать изменения внешних условий. Колебания могли бы моделировать годичные или более длительные изменения, чередования теплых и холодных периодов, а скачкообразные изменения – влияние природных катаклизмов на экосистемы. Существуют и другие разнообразные условия, приводящие как к положительным, так и к отрицательным последствиям, но их вряд ли уместно классифицировать более подробно.

В дальнейшем мы всегда будем предполагать, что система всегда находится в стационарном окружающем поле. Явная зависимость от времени в этом случае не возникает, но изменение величины D в зависимости от плотности х может быть весьма разнообразным. Рассмотрим сначала простейший случай – зависимость от х,

Несколько более реалистическим является учет ограничивающего члена в виде

препятствующем для К > 1) расходимости при Если число особей очень велико, то смертность сильно возрастает и система стабилизируется на уровне, зависящем от функций i. В могут быть включены члены более высокого) порядка. Включение кубической нелинейности может привести к возникновению бистабильных ситуаций, в которых число особей может устанавливаться на двух, вообще говоря, не зависящих от г устойчивых значениях.

Однако возможные режимы этим отнюдь не исчерпываются. Особенно большой интерес наряду с перечисленными выше вариантами нелокальных зависимостей представляют такие, которые в простейшей форме могут быть записаны следующим образом:

Ядро интеграла описывает взаимодействие между особями самых различных возрастов внутри одного вида. При эффективная смертность особей, достигших возраста г, понижается за счет наличия особей возраста . Примером может служить, например, особенно тщательная забота о потомстве на протяжении первых отрезков жизни или поддержка старых, весьма опытных особей. Соответственно, приводит к внутривидовой конкуренции, проявляющейся в борьбе за верховенство или в "конфликтах поколений". Как и в соотношение, в формулу могут входить члены высшего порядка, описывающие взаимодействие между тремя и более различными возрастными группами.

Страницы: 1 2

Статьи и публикации:

Сигналы нервных клеток
Для анализа событий во внешнем мире или внутри нашего тела, для передачи информации от клетки к клетке нейроны используют электрические и химические сигналы. Расстояние передачи сигнала может быть большим: от кончиков пальцев на ногах до ...

Русские учёные в развитии генетики. Филипченко Юрий Александрович
У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических дисциплин – зоологии, ботаники, гидробиологии, эмбриологии. Одним из таких пионеров в генетике был Юрий Александрович Фи ...

Учение Ж.Б. Ламарка. Другие представления об эволюции органического мира в первой половине XIX в.
Жан Батист Ламарк (1744–1829) – французский академик, выдающийся представитель биологии конца XIII и первой половины XIX в., автор мемуаров по метеорологии, флоры Франции и ботанического словаря. В 1802 г. в книге «Гидрология» Ж.Б. Ламар ...

Разделы