Биология » Закон природы » Какие типы связей имеют место в кристаллах? Опишите модификации углерода. Почему столь многообразны соединения углерода? Какие особенности строения атома углерода определили его роль в живой природе

Какие типы связей имеют место в кристаллах? Опишите модификации углерода. Почему столь многообразны соединения углерода? Какие особенности строения атома углерода определили его роль в живой природе
Страница 2

Водородные связи, образуемые молекулами воды, обусловливают удивительно высокие точки плавления льда и кипения воды, существование максимума плотности воды, расширение воды при замерзании. Многие особые свойства неорганических и органических молекул, например димеризация жирных кислот, объясняются образованием водородных связей. Водородная связь – особенно важная структура белков особенность белков и нуклеиновых кислот.

Молекулярные связи образуют, например, следующие вещества: H2, N2, O2, CO2, H2O.

Типы химической связи – это удобное упрощение. Более точно поведение электрона в кристалле описывается законами квантовой механики. Говоря о типе связи в кристалле, необходимо иметь в виду следующее: связь между двумя атомами никогда полностью не соответствует одному из описанных типов. В ионной связи всегда присутствеет элемент ковалентной связи и т.п.

Многообразие соединения углерода связано с тем, что в сложных веществах связь между разными атомами может быть разного типа. Так например, в кристалле белка связь в молекуле белка ковалентная, а между молекулами (или разными частями одной молекулы) водородная.

Существуют четыре аллотропных модификации углерода: алмаз, графит, карбин и букибол.

Кристаллическая решетка алмаза состоит из атомов углерода, соединенных между собой очень прочными s-связями. В кристалле алмаза все связи эквивалентны и атомы образуют трехмерный каркас из сочлененных тетраэдров. Алмаз – самое твердое вещество, найденное в природе.

Графит представляет собой темно-серое с металлическим блеском, мягкое, жирное на ощупь вещество. Хорошо проводит электрический ток. В графите атомы углерода расположены в параллельных слоях, образуя гексагональную сетку. Внутри слоя атомы связаны гораздо сильнее, чем один слой с другим, поэтому свойства графита сильно различаются по разным направлениям.

Карбин – получен искусственным путем. Существует два вида карбина: поликумулен =С=С=С=С= и полиин – C=C-C=C-C=C –.

Букибол – получен в 1985 г., имеет сферическую форму (как футбольный мяч), состоит из 60 или 70 атомов углерода.

Углерод в виде сажи, кокса, древесного угля, костных углей широко используется в металлургии, синтезе органических веществ, как топливо, в быту.

Особенности строения углерода. Соединения, в состав которых входит углерод, называются органическими.

Кроме углерода, они почти всегда содержат водород, довольно часто – кислород, азот и галогены, реже – фосфор, серу и другие элементы. Однако сам углерод и некоторые простейшие его соединения, такие как оксид углерода (II), оксид углерода (IV), угольная кислота, карбонаты, карбиды и т.п., по характеру свойств относятся к неорганическим соединениям.

В атоме углерода можно увеличить число неспаренных электронов на внешнем втором слое, если распарить электронную пару 2s-подуровня, «выселив» электрон в свободную атомную орбиталь на р-подуровне. Тогда атом углерода сможет образовать четыре связи с другими атомами, проявляя валентность IV.

Страницы: 1 2 

Статьи и публикации:

Рефлекс как основа нервной деятельности и рефлекторная дуга. Механизм образования условного рефлекса. Виды рефлексов и их классификации
Рефлекс— основная форма деятельности нервной системы, ответная реакция организма на раздражение, осуществляемая при участии нервной системы. Восприятие раздражения из внешней и внутренней среды рецепторами, возникновение в них нервных имп ...

Фагоциты
Фагоцитоз представляет собой важную особенность клеточного звена врождённого иммунитета, которую осуществляют клетки, называемые фагоцитами, которые "заглатывают" чужеродные микроорганизмы или частицы. Фагоциты обычно циркулирую ...

Этапы становления генетики
Явление наследственности требует для своей реализации существования специфических носителей наследственной информации, т.е. специфического генетического материала, который должен обладать способностью к ауторепродукции (репликации, редупл ...

Разделы