Биология » Методи исследования клеток » Технология рекомбинантных ДНК

Технология рекомбинантных ДНК

Этот последний раздел посвящен методам изучения структуры и функции клеточных ДНК. Классический подход подразумевает использование генетических методов, позволяющих судить о функции генов, анализируя фенотипы мутантных организмов и их потомства. Этот подход по-прежнему эффективен, но в последнее время он дополнен набором методов, которые в сумме известны как "технология рекомбинантных ДНК". Эти методы существенно расширили возможности генетических исследований, поскольку с их помощью удается проводить как прямой контроль, так и детальный химический анализ генетического материала. Используя методологию рекомбинантных ДНК, удается даже минорные клеточные белки получать в больших количествах и, следовательно, проводить тонкие биохимические исследования структуры и функции белка.

Еще не так давно, всего лишь в начале 70-х годов биохимики считали, что ДНК является наиболее сложным для исследования компонентом клетки. Чрезвычайно длинную, химически монотонную последовательность нуклеотидов в наследственном материале тогда можно было исследовать лишь с помощью косвенных методов - либо определяя структуру белка или РНК, либо с помощью генетического анализа. В настоящее время можно вырезать отдельные участки ДНК, получать их практически в неограниченном количестве и определять последовательность нуклеотидов по нескольку сот нуклеотидов в день.

С помощью этих же методов можно по желанию экспериментатора изменить выделенный ген и ввести его вновь в геном культивируемых клеток или эмбрион животного (что несколько более сложно), где этот измененный ген начинает функционировать.

Технология рекомбинантных ДНК оказала существенное воздействие на всю клеточную биологию, позволяя исследователям решать задачи, которые раньше казались неразрешимыми, например, определять функции многих вновь открытых белков и их индивидуальных доменов, расшифровывать сложные механизмы регуляции экспрессии генов у эукариот. С помощью методов генной инженерии удалось в большом количестве получить многие белки, участвующие в регуляции клеточной пролиферации и развитии. Применение этих методов должно принести успех в крупномасштабном промышленном производстве белковых гормонов и искусственных вакцин, на получение которых ранее затрачивали очень много сил и средств.

Технология рекомбинантных ДНК включает в себя набор методов - как новых, так и заимствованных из других дисциплин, например из генетики микроорганизмов. Наиболее важные среди них это:1)специфическое расщепление ДНК рестрщирующими нуклеазами, что существенно ускоряет выделение и манипуляции с различными генами; 2)быстрое секвенирование всех нуклеотидов в очищенном фрагменте ДНК, что позволяет определить точные границы гена и аминокислотную последовательность, кодируемую им;3) гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большой точностью и чувствительностью на основании их способности связывать комплементарные последовательности нуклеиновых кислот; 4)клонирование ДНК: интересующий исследователя ДНК-фрагмент вводят в самореплицирующийся генетический элемент (плазмиду или вирус), который используют для трансформации бактерий. Бактериальная клетка после трансформации воспроизводит этот фрагмент во многих миллионах идентичных копий; 5) генетическая инженерия, посредством которой последовательности ДНК изменяют с целью создания модифицированных версий генов, которые затем вновь внедряют в клетки или организмы.

Статьи и публикации:

Мембранные поры, создаваемые экзогенными агентами
1. Токсины и цитолитические белки. В природе существуют различные водорастворимые токсины, взаимодействующие со специфическими клетками-мишенями. Одни токсины способствуют высвобождению в цитоплазму фермента, оказывающего летальное возде ...

Возрастные особенности системы крови и лимфы. Иммунитет как защитная реакция организма, виды иммунитета и его возрастные особенности. Свертываемость крови
Кровь представляет собой внутреннюю жидкую среду организма, обеспечивающую определенное постоянство основных физиологических и биохимических параметров и осуществляющую гуморальную связь между органами. Кровь является своеобразной формой ...

Краткая история возникновения генетически модифицированных организмов
Истоки развития генной инженерии растений лежат в 1977 году, когда и произошло открытие, позволившее использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве орудия введения чужих генов в другие растения. В 1987 году был ...

Разделы