Биология » Геномика как научная дисциплина » Задачи и цели геномики. Взаимосвязь геномики и протеомики

Задачи и цели геномики. Взаимосвязь геномики и протеомики
Страница 1

Задача геномики — установление полной генетической характеристики всей клетки — количества содержащихся в ней генов и их последовательности, количества нуклеотидов в каждом гене и их последовательности, определение функций каждого гена по отношению к метаболизму организма или, более обще, применительно к его жизнедеятельности.

Геномика позволяет выразить сущность организма — его потенциальные возможности, видовые (и даже индивидуальные) отличия от других организмов, предвидеть реакцию на внешние воздействия, зная последовательность нуклеотидов в каждом из генов и число генов.

Цель геномики — получение информации обо всех потенциальных свойствах клетки, которые не реализуются на данный момент, например, "молчащие гены", протеомика же дает возможность охарактеризовать клетку в данный момент, зафиксировав все находящиеся в ней белки в своего рода "моментальной фотографии" функционального состояния клетки на уровне ее протеома, т.е. совокупности всех ферментных и структурных белков, которые "работают" в отличие от неэкспрессирующихся генов.

При этом, если геномика появилась прежде всего в результате развития техники секвенирования, то для протеомики такую же основополагающую роль играет техника двухмерного электрофореза — разделения белков в одном направлении по молекулярной массе, а в другом — по изоэлектрической точке. Сам по себе этот метод не нов, однако он в значительной мере усовершенствован, что позволяет следить в динамике за сотнями белков одновременно.

Протеомика позволяет следить за белковыми взаимодействиями. Это относится, например, к передаче сигналов от поверхности клетки к факторам избирательной транскрипции в ядре. С ее помощью может быть преобразована, таким образом, не только технология скрининга иммуносупрессоров, но и ингибиторов сигнальной трансдукции в целом. Методы протеомики позволяют получить более полную, всестороннюю картину взаимодействия с клеткой новых потенциальных антимикробных агентов. Работы по изучению динамики биосинтеза ферментов вторичного метаболизма у микроорганизмов при использовании протеомики могут быть переведены на новый, более высокий уровень.

Возвращаясь к связи протеомики с геномикой, следует подчеркнуть, что протеомика может быть названа продолжением именно функциональной геномики. В отличие от геномики предметом изучения протеомики являются продукты, кодируемые генами, экспрессирующимися в данный момент.

Минимальные геномы микроорганизмов некоторых видов состоят из нескольких сотен генов. Геном человека приближается к ста тысячам генов. Размеры отдельных генов варьируют примерно от одной тысячи пар нуклеотидов и выше. Таким образом, количество пар нуклеотидов, составляющих индивидуальный геном, измеряется как минимум сотнями тысяч, обычно же многими миллионами пар нуклеотидов.

Следовательно, для полного знания генома организма надо определить последовательность нескольких миллионов пар нуклеотидов (А-Т — аденин-тимидин, Г-Ц — гуанидин-цитозин). Провести "секвенирование", согласно вошедшему в употребление выражению, целого генома можно только при наличии высоких технологий и соответствующего оборудования.

В настоящее время в качестве ежесуточного итога работы многих десятков лабораторий в разных странах мира секвенируется приблизительно один миллион пар нуклеотидов. Хранить же полученные данные и пользоваться ими невозможно без обращения к специальным базам данных, некоторые из которых имеют статус международных. Широкую известность имеют базы данных института геномных исследований (США) и Гейдельбергского университета (Германия). Международные базы данных позволяют получать сведения о гене и его распространенности среди патогенов; о кодируемом этим геном продукте и об участии этого продукта (как правило, фермента) в том или ином метаболическом цикле; о катализировании им конкретной реакции в цикле. Иными словами, исходным тест-объектом для отбора антимикробных веществ, избирательных ингибиторов метаболизма становится уже не микробная культура, а ген (точнее, кодируемый им продукт).

Страницы: 1 2

Статьи и публикации:

Нервная система
К нервной системе относятся спинной мозг, головной мозг и отходящие от них нервы. Нервная система связывает все системы организма в единое целое и обеспечивает связь организма с внешней средой. В основе объединяющей функции нервной систе ...

Мочеточники
Мочеточники – полые трубки, соединяющие почечную лоханку с мочевым пузырем. Как и почки, они лежат на задней стенке брю­шной полости позади брюшины. В мочеточнике выделяют брюш­ную, тазовую и пузырную части. Последняя расположена в толще ...

Понятие о фитоценозе. Понятие «экотоп», «биотоп», «биоценоз», «биогеоценоз». Схема взаимодействий компонентов биогеоценоза. Ф. как центральный компонент биогеоценоза. Свойства Ф.ов. Концепция (парад
v Ф. – это элементарный участок растительности, для которого характерно: относительная однородность по внешнему облику, v видовому составу, строению и структуре, v относительно одинаковой системой взаимоотношений между популяциями видо ...

Разделы