Материалы и методы
Страница 1

Объектами исследования служили генетически маркированные штаммы-продуценты аминокислот, белков и нуклеозидов, полученные из Всероссийской коллекции промышленных микроорганизмов (ВКПМ) Государственного научно-исследовательского института генетики и селекции промышленных микроорганизмов:

1. Brevibacterium methylicum ВКПМ В 5652, лейцинзависимый штамм факультативных метилотрофных бактерий, продуцент фенилаланина.

2. Methylobacillus flagellatum КТ, изолейцинзависимый штамм облигатных метилотрофных бактерий, продуцент лейцина.

3. Bacillus subtilis В-3157, полиауксотрофный по гистидину, тирозину, аденину и урацилу штамм грамотрицательных бактерий, продуцент инозина.

4. Halobacterium halobium ЕТ 1001, пигментсодержащий штамм галофильных бактерий, способный синтезировать бактериородопсин.

Для приготовления питательных сред и адаптации бактерий использовали 2H2O (99.9% 2H), и 2HСl (95.5% 2H) и [U- 2Н]метанол (97.5% 2H), полученные из Российского научно-исследовательского центра “Изотоп” (Санкт-Петербург, РФ). По необходимости 2H2O очищали от вредных примесей, перегоняя её над перманганатом калия [22].

Стартовым материалом для культивирования галофильных бактерий и бацилл служила (2Н)меченая биомасса метилотрофных бактерий, полученная в условиях многостадийной адаптации на твердых агаризованных средах (2% агар) с 2% [U- 2Н]метанолом, содержащих ступенчато увеличивающиеся концентрации тяжёлой воды (от 0 до 98% 2Н2О). Полученную таким образом (2Н)меченую биомассу B. methylicum (выход составил 100 г по влажному весу с 1 л. среды) автоклавировали в 0.5 н. растворе 2HСl (в 2H2O) (08 ати, 30 мин), нейтрализовали 0.1 н. КОН (рН 7.0) и использовали далее в качестве источника ростовых факторов для адаптации и культивирования бацилл и галофильных бактерий.

В настоящей работе использовали следующие питательные среды (количества компонентов приведены в г/л):

1. Минимальная среда М9, на основе различных концентраций 2H2O (см. табл. 1 и табл. 2) и добавками 0.5-2% метанола (в зависимости от физиологической потребности бактерий) или [U-2H]метанола: KH2PO4 3; Na2HPO4 6; NaCl 0.5; NH4Cl 1. Среду использовали для культивирования метилотрофных бактерий.

2. Гидролизная среда 1 (ГС1) для культивирования бацилл (на основе 100% 2H2О): глюкоза 120; (2Н)меченая биомасса B. methylicum 25; NH4NO3 30; MgSO4 x 7H2O 20; мел 20.

3. Гидролизная среда 2 (ГС2)

для культивирования галофильных бактерий (на основе 100% 2H2О): NaCl 250; MgSO4 x 7H2O 20; KCl 2; CaCl2 x 6H2O 0.065; цитрат натрия 0.5; (2Н)меченая биомасса B. methylicum 20.

Культивирование метилотрофных бактерий и бацилл проводили при 370 С в колбах Эрленмейера вместимостью 250 мл с наполнением средой до 50 мл в условиях интенсивной аэрации по методикам [14] и [15], используя в качестве источников дейтерия 2H2O и [U-2H]метанол. В случае с галофильными бактериями их культивирование проводили на 2H2O-среде при освещении лампами дневного света ЛБ-40. После 6-7 суток культивирования клетки отделяли центрифугированием (10000 об/мин, 20 мин). В культуральных жидкостях анализировали секретируемые аминокислоты и нуклеозиды.

Для выделения фракции суммарных белков биомассы клетки дважды промывали дистиллированной водой с последующим центрифугированием (10000 об/мин, 20 мин), экспонировали ультразвуком при 22 кГц (3 x 15 мин) и центрифугировали. Липиды и пигменты экстрагировали смесью органических растворителей хлороформ-метанол-ацетон (2:1:1) по методу Блайя и Дайера [23]. Полученный осадок высушивали до постоянного веса (10-12 мг) и использовали его в качестве фракции суммарных белков биомассы.

Суммарные белки биомассы гидролизовали в запаянных стеклянных ампулах в 50-ти кратном избытке 6 н. 2HCl (в 2H2O). Ампулы выдерживали при 1100 в течение 24 ч. После этого реакционную массу суспендировали в горячей дистиллированной воде, фильтровали. Гидролизат упаривали в роторном испарителе при 400 С. Остатки дейтеросоляной кислоты удаляли путем выдерживания в эксикаторе над твердым NaOH.

Для проведения гидролиза внутриклеточных полисахаридов 50 мг сухой делипидизованной биомассы помещали в круглодонную колбу вмесимостью 250 мл, добавляли 50 мл дистиллированной воды и 1.6 мл 25% 2H2SO4 и кипятили с обратным водяным холодильником в течении 90 мин. По охлаждении реакционную смесь суспендировали в одном объёме горячей дистиллированной воды и нейтрализовали 2 н. раствором Ba(ОН)2 до рН 7.0. Выпавший осадок сульфата бария отделяли центрифугированием (15000 об/мин, 5 мин), супернатант декантировали и упаривали в роторном испарителе при 400 С.

Рост бактерий оценивали по способности к образованию отдельных колоний на поверхности твёрдых агаризованных сред, а также по величине оптической плотности суспензии клеток, измеренной на спектрофотометре Beckman-DU6 (США) при 540 нм в кварцевой кювете с длиной оптического пути 10 мм.

Страницы: 1 2

Статьи и публикации:

Активный транспорт
В последнее время достигнуты большие успехи в изучении активного транспорта, представляющего наибольший интерес из всех видов трансмембранного движения веществ. Особенностью активного транспорта является перенос молекул вещества через мем ...

Сцепленное наследование
Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независ ...

Флористическая полночленность и неполночленность фитоценозов. Основные причины неполночленности фитоценозов. Практическая значимость выявления неполночленных фитоценозов.
Под флористически неполночленными фитоценозами он понимал сообщества, в состав которых входят не все виды растений, способные в них существовать. Раменским были выделены фитоценозы абсолютно полночленные, туземно полночленные, практически ...

Разделы