Биология » Влияние гипотермии на экспрессию генов » Изменения экспрессии генов при гипотермии

Изменения экспрессии генов при гипотермии

Как известно, в клетках растений, насекомых, млекопитающих как тепловой, так и холодовой шок вызывает изменения в активности генов. При этом начинается синтез небольшого числа «белков теплового шока» и прекращается синтез всех остальных белков. Если продолжить аналогию между тепловым и холодовым шоками, то следует ожидать, что при понижении температуры в определенных границах начнут функционировать специфические гены. В этой связи становится понятной противоречивость данных об изменении содержания РНК при гипотермии. Значительная часть авторов указывает, что во время охлаждения и холодового закаливания у растени повышается общее содержание РНК, но имеются и противоположные результаты. Изучение специфических видов РНК после фракционирования показало относительное повышение содержания РНК, действующе на уровне трансляции. Низкотемпературное закаливание растения приводит к структурным изменениям в рибосомах. http://pilorama-ekb.ru доска 25х150х6000 цена за штуку и куб.

Ч. Гай с соавторами привели прямое доказательство того, что гипотермия индуцирует изменения в экспрессии генов. Используя трансляцию в бесклеточно системе, они показали, что под действием низких положительных температур происходит быстрое и стабильное изменение набора поли+мРНК, выражающееся в появлении специфических РНК холодового стресса. Изменение набора поли+мРНК происходило уже в первые сутки закаливания, при этом начиналось развитие холодоусточивости,. С началом развития устойчивости коррелировало появление двух мРНК, которые в бесклеточно системе определяют синтез белков холодового шока с молекулярными массами 82 и 180 кДа. В последующие 8 суток продолжается изменение состава мРНК: содержание четырех мРНК увеличивается, а трех - значительно уменьшается. Большая часть белков, синтез которых индуцировался гипотермие, не идентична по молекулярным массам и pI белкам теплового шока. Таким образом, это сообщение является одним из первых свидетельств существования в растениях белков холодового шока, отличных от белков теплового шока.

Быстрое изменение набора мРНК с началом холодового закаливания было впоследствии подтверждено другими исследователями. Так, было показано, что двухдневная экспозиция проростков люцерны при 40С приводит к резкому увеличению содержания общего количества РНК и к изменению состава транслируемых мРНК. Трансляция in vitro поли+мРНК, с последующим электрофорезом меченых полипептидов, показала индукцию синтеза низко- и высокомолекулярных белков холодового шока. При переносе растений в условия с «нормальной» температурой происходило обратное изменение спектра полипептидов и, следовательно, набора мРНК. Показано, что мРНК, индуцируемые охлаждением, накапливаются с различно скоростью. При трансляции in vitro обнаружены группы белков с различной индукцией синтеза de novo -от 6 до 12 часов, а также белки, содержание которых при холодовом закаливании снижается.

В последующие годы изучение изменений в синтезе РНК при низкотемпературном стрессе привлекло особое внимание исследователе. К настоящему времени выделено и охарактеризовано значительное число мРНК, экспрессирующихся при низкотемпературном стрессе и в процессе адаптации растения к низким температурам. В частности, установлено, что, например, в люцерне во время холодовой акклиматизации накапливаются две мРНК, MsaCiA и MsaCiB, которые кодируют белки, содержащие богатые глицином мотивы. Слитые полипептиды, содержащие аминокислотные последовательности, выведенные на основании этих мРНК, продуцировались в E. coli и были использованы для получения антител. Полученные антитела обладали кросс-реактивно специфичностью с растворимыми полипептидами MsaCiA и MsaCiB, соответственно. Эти полипептиды обнаруживались только в верхушках закаленных растений, хотя во время холодовой акклиматизации мРНК для

MsaCiA накапливалась как в верхушках, так и в стеблях. Анализ белков при помощи вестерн-блоттинга показал, что MsaCiA-подобные белки с молекулярными массами 32, 41 и 68 кДа накапливались в клеточных стенках стебле, и один, с молекулярно массой 59 кДа, - в клеточных стенках побегов. Показано, что эта дифференциальная экспрессия включает как транскрипционную, так и посттрансляционную регуляцию. Сравнение, проведенное между шестью сортами люцерны с контрастно морозоустойчивостью, подтверждает то, что способность накапливать до значительного уровня белки, подобные MsaCiA и MsaCiB, может быть связана с устойчивостью растения к низким температурам.

В ходе исследований экспрессии генов при низких температурах было выявлено несколько групп генов, экспрессия которых индуцируется холодовым шоком и адаптацией растения к низким температурам. Далее будут рассмотрены основные семейства таких генов.

Статьи и публикации:

Теория стационарного состояния.
Согласно этой теории, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всег ...

Покровные ткани
Они исполняют роль пограничного барьера, отделяя ниже лежащие ткани от окружающей среды. Первичные покровы растения состоят только из живых клеток. Вторичные и третичные покровы – в основном из мертвых с толстыми клеточными стенками. Осн ...

Общие аналитические признаки фитоценоза: встречаемость, жизненность (виталитет), фенофаза, феноспектр, аспект. Методы их учета. Понятие о проективном покрытии, ценокванте
Наиболее простым показателем пространственного распределения вида является его встречаемость , метод изучения которой разработан К. Раункиером. Для оценки встречаемости вида в ценопопуляции регулярно или в случайном порядке закладывается ...

Разделы