Биология » Основы естествознания » Глобальная научная революция конца XIX — начала XX в.

Глобальная научная революция конца XIX — начала XX в.
Страница 1

Глобальная научная революция начинается с целого ряда замечательных открытий, разрушивших всю классическую научную картину мира. В 1888 г. Г. Герц открыл электромагнитные волны, блестяще подтвердив предсказание Дж. Максвелла. В 1895 г. В. Рентген обнаружил лучи, получившие позднее название рентгеновских, которые представляли собой коротковолновое электромагнитное излучение. Изучение природы этих загадочных лучей, способных проникать через светонепроницаемые тела, привело Дж.Дж. Томсо-на к открытию первой элементарной частицы — электрона.

Важнейшим открытием 1896 г. стало обнаружение радиоактивности А. Беккерелем. Изучение этого феномена началось с исследования загадочного почернения фотопластинки, лежавшей рядом с кристаллами соли урана. Э. Резерфорд в своих опытах показал неоднородность радиоактивного излучения, состоявшего из лучей. Позже, в 1911 г. он смог построить планетарную модель атома.

К великим открытиям конца XIX в. также следует отнести работы А.Г. Столетова по изучению фотоэффекта, П.Н. Лебедева о давлении света. В 1901 г. М. Планк, пытаясь решить проблемы классической теории излучения нагретых тел, предположил, что энергия излучается малыми порциями — квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения. Связывающий эти величины коэффициент пропорциональности ныне называется постоянной Планка (h). Она является одной из немногих универсальных физических констант нашего мира и входит во все уравнения физики микромира. Также было обнаружено, что масса электрона зависит от его скорости.

Все эти открытия буквально за несколько лет разрушили то стройное здание классической науки, которое еще в начале 80-х гг.

XIX в. казалось практически законченным. Все прежние представления о материи и ее строении, движении и его свойствах и типах, форме физических законов, пространстве и времени были опровергнуты. Это привело к кризису физики и всего естествознания, а роме того, стало симптомом более глубокого кризиса и всей классической науки.

Кризис физики стал первым этапом второй глобальной научной революции в науке и переживался большинством ученых очень тяжело. Ученым казалось, что неверным было все то, чему они учились.

В лучшую сторону ситуация начала меняться только в 20-е гг.

XX в., с наступлением второго этапа научной революции. Он связан с созданием квантовой механики и сочетанием ее с теорией тносительности, созданной в 1906—1916 гг. Тогда начала складываться новая квантово-релятивистская картина мира, в которой открытия, приведшие к кризису в физике, были объяснены.

Началом третьего этапа научной революции было овладение атомной энергией в 40-е гг. XX в. и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период физика передает эстафету химии, биологии и циклу наук о Земле, начинающих создавать свои собственные научные картины мира. Следует также отметить, что с середины XX в. наука окончательно слилась с техникой, что, в свою очередь, привело к современной научно-технической революции.

Главным концептуальным изменением естествознания XX в. был отказ от ньютоновской модели получения научного знания через эксперимент к объяснению. А. Эйнштейн предложил иную модель, в которой гипотеза и отказ от здравого смысла как способа проверки высказывания, становились первичными в объяснении явлений природы, а эксперимент — вторичным.

Развитие эйнштейновского подхода приводит к отрицанию ньютоновской космологии и формирует новую картину мира, в которой логика и здравый смысл перестают действовать. Оказывается, что твердые атомы Ньютона почти целиком заполнены пустотой. Материя и энергия переходят друг в друга. Трехмерное пространство и одномерное время превратились в четырехмерный пространственно-временной континуум. Согласно этой картине мира планеты движутся по своим орбитам не потому, что их притягивает к Солнцу некая сила, а потому, что само пространство, в котором они движутся, искривлено. Субатомные явления одновременно проявляют себя и как частицы, и как волны. Нельзя одновременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подорвал ньютоновский детерминизм. Нарушились понятия причинности, субстанции, твердые дискретные тела уступили место формальным отношениям и динамическим процессам.

Страницы: 1 2

Статьи и публикации:

Метаболизм и физиологические значения азота как одного из самых важных элементов питания
Для растений азот – дефицитный элемент. Если некоторые микроорганизмы способны усваивать атмосферный азот, то растения могут использовать лишь азот минеральный. Растения никогда не выделяют азотистые соединения как продукты отброса и там, ...

Семейство Salviniaceae - Сальвиниевые
Водный однолетний разноспоровый папоротник с тонким разветвлённым стеблем, 3-10 см длиной, плавающий на поверхности водоёмов. Листья собраны потри в мутовки: два - надводных, один - подводный. Надводные листья овальные, тупые, при основан ...

Близкодействие и дальнодействие, динамические и статические закономерности в природе
Дальнодействие и близкодействие– две противоречащие друг другу теории классической физики, появившиеся в начале её зарождения. Дальнодействие можно представит как мгновенное распространение гравитационных и электрических сил через пусто ...

Разделы