Биология » Методи исследования клеток » Фракционирование клеточного содержимого

Фракционирование клеточного содержимого
Страница 1

При осторожном применении методов разрушения некоторые органеллы сохраняются в интактном состоянии (ядра, минтохондрии, апарат Гольджи, лизосомы

и пероксисомы). Таким образом, суспензия клеток превращается в растворимый экстракт, содержащий довольно грубую суспензию связанных с мембраною частиц, обладающих характерными размерами, зарядом и плотностью.

После того как в начале 40-х годов начали использовать препаративную центрифугу, разделение различных компонентов гомогената стало вполне реальным. Такая обработка делит клеточные компоненты по их размеру: более крупные частицы при центрифугировании движутся быстрее. Крупные компоненты экстракта, в том числе ядра или неразрушенные клетки, быстро оседают при относительно низких скоростях и образуют осадок на дне центрифужной пробирки.

Ультрацентрифуга разделяет клеточные компоненты не только по массе, но и по плавучей плотности. В этом случае образец седиментирует в круговом градиенте, образованном высококонцентрированным раствором сахарозы или хлористого цезия. Компоненты клеток опускаются по градиенту до тех пор, пока не достигнут участка, плотность раствора в котором равна собственной плотности компонентов. Дальнейшей седиментации компонентов не происходит и они "застревают" на этом уровне. Таким образом, в центрифужной пробирке возникает набор различных полос, причем полосы прилежащие к дну пробирки, содержат компоненты максимальной плавучей плотности. Данный метод настолько чувствителен, что с его помощью можно отделять немеченые макромолекулы от макромолекул, содержащих тяжелые изотопы (13С или 15N).

Фракционированные клеточные экстракты, называемые также бесклеточными системами, широко используются для изучения внутриклеточных процессов. Только работая с бесклеточными экстрактами можно установить молекулярный механизм биологических процессов, поскольку лишь в этом случае исследуемых механизм может быть изучен в чистом виде без помех, создаваемых происходящими в клетке побочными реакциями. Использование бесклеточных систем принесло первый триумфальный успех при изучении механизмов биосинтеза белка. Отправной точкой в данном случае послужил неочищенный клеточный экстракт, способный транслировать молекулы РНК в белок. После многократного фракционирования этого экстракта были получены рибосомы, РНК и различные ферменты, составляющие в совокупности аппарат биосинтеза белка. После получения отдельных компонентов в чистом виде их можно было добавлять в систему и исключать из нее и таким образом уточнять роль каждого компонента в процессе биосинтеза белка. Эта же "система трансляции in vitro" оказалась полезной для расшифровки генетического кода-с использованием в качестве матричной РНК (мРНК) искусственных полинуклеотидов известного состава.

В настоящее время различные системы трансляции in vitro применяют и для определения механизмов распределения белков по различным внутриклеточным компартментам, а также для идентификации белков, кодируемых очищенными препаратами мРНК (очистка мРНК является важным этапом в процедуре клонирования генов).

Многое из того, что мы знаем о молекулярной биологии клетки, открыто при изучении бесклеточных систем. Именно так удалось выяснить механизмы репликации ДНК, транскрипции ДНК, сплайсинга РНК, мышечного сокращения и транспорта частиц по микротрубочкам. Анализ в бесклеточных системах подразумевает полное разделение всех составляющих ее индивидуальных макромолекулярных компонентов и, в частности всех белков, входящих в систему. Методы разделения белков рассматриваются в последующих разделах.

В настоящее время хроматография является одним из методов, наиболее широко используемых для фракционирования белков. Наибольшее распространение получила распределительная хроматография.

Белки чаще всего разделяют методом хроматографии на колонках (колоночная хроматография). В этом случае смесь молекул в растворе пропускают через колонку, содержащую твердый пористый матрикс. В результате взаимодействия с матриксом различные белки проходят через колонку с различной скоростью. После того как разные белки достигнут в определенной последовательности дна колонки, их собирают отдельными фракциями. В настоящее время разработано и применяется множество матриксов различных типов, используя, которые можно делить белки согласно их заряду (ионообменная хроматография), гидрофобности (гидрофобная хроматография), размеру (хроматография гель-фильтрацией) или способности связываться различными химическими группами (аффинная хроматография).

На каждом, этапе колоночной хроматографии содержание белка в смеси увеличивается не более чем в 20 раз, и поэтому выделить из сложной смеси белков отдельный белок за один цикл практически невозможно. На долю каждого белка, как правило, приходится менее 1/1000 всего белка клетки, и для его очистки требуется последовательное использование нескольких различных типов колонок.

Страницы: 1 2 3 4

Статьи и публикации:

Сложность физиологических процессов
Такие физиологические процессы, как фотосинтез, дыхание или транспирация представляют совокупность химических и физических процессов. Чтобы понять механизм физиологического процесса, необходимо выделить его физические и химические компоне ...

Экстрагирование ферментов
Все ферменты являются водорастворимыми белками, поэтому наилучшим экстрагентом для них является вода. Для извлечения ферментов из дрожжей или бактерий необходимо подвергнуть механическому или автолитическому разрушению их клеточные стенки ...

Биофактор как источник биоповреждения
Подавляющее большинство (от 50 до 80 %) повреждений РЭСИ обусловлено воздействием на них микроорганизмов (бактерий, плесневых грибов и др.), развитие и жизнедеятельность которых определяются внешними воздейству­ющими факторами: физическим ...

Разделы