Биология » Методи исследования клеток » Фракционирование клеточного содержимого

Фракционирование клеточного содержимого
Страница 1

При осторожном применении методов разрушения некоторые органеллы сохраняются в интактном состоянии (ядра, минтохондрии, апарат Гольджи, лизосомы

и пероксисомы). Таким образом, суспензия клеток превращается в растворимый экстракт, содержащий довольно грубую суспензию связанных с мембраною частиц, обладающих характерными размерами, зарядом и плотностью. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

После того как в начале 40-х годов начали использовать препаративную центрифугу, разделение различных компонентов гомогената стало вполне реальным. Такая обработка делит клеточные компоненты по их размеру: более крупные частицы при центрифугировании движутся быстрее. Крупные компоненты экстракта, в том числе ядра или неразрушенные клетки, быстро оседают при относительно низких скоростях и образуют осадок на дне центрифужной пробирки.

Ультрацентрифуга разделяет клеточные компоненты не только по массе, но и по плавучей плотности. В этом случае образец седиментирует в круговом градиенте, образованном высококонцентрированным раствором сахарозы или хлористого цезия. Компоненты клеток опускаются по градиенту до тех пор, пока не достигнут участка, плотность раствора в котором равна собственной плотности компонентов. Дальнейшей седиментации компонентов не происходит и они "застревают" на этом уровне. Таким образом, в центрифужной пробирке возникает набор различных полос, причем полосы прилежащие к дну пробирки, содержат компоненты максимальной плавучей плотности. Данный метод настолько чувствителен, что с его помощью можно отделять немеченые макромолекулы от макромолекул, содержащих тяжелые изотопы (13С или 15N).

Фракционированные клеточные экстракты, называемые также бесклеточными системами, широко используются для изучения внутриклеточных процессов. Только работая с бесклеточными экстрактами можно установить молекулярный механизм биологических процессов, поскольку лишь в этом случае исследуемых механизм может быть изучен в чистом виде без помех, создаваемых происходящими в клетке побочными реакциями. Использование бесклеточных систем принесло первый триумфальный успех при изучении механизмов биосинтеза белка. Отправной точкой в данном случае послужил неочищенный клеточный экстракт, способный транслировать молекулы РНК в белок. После многократного фракционирования этого экстракта были получены рибосомы, РНК и различные ферменты, составляющие в совокупности аппарат биосинтеза белка. После получения отдельных компонентов в чистом виде их можно было добавлять в систему и исключать из нее и таким образом уточнять роль каждого компонента в процессе биосинтеза белка. Эта же "система трансляции in vitro" оказалась полезной для расшифровки генетического кода-с использованием в качестве матричной РНК (мРНК) искусственных полинуклеотидов известного состава.

В настоящее время различные системы трансляции in vitro применяют и для определения механизмов распределения белков по различным внутриклеточным компартментам, а также для идентификации белков, кодируемых очищенными препаратами мРНК (очистка мРНК является важным этапом в процедуре клонирования генов).

Многое из того, что мы знаем о молекулярной биологии клетки, открыто при изучении бесклеточных систем. Именно так удалось выяснить механизмы репликации ДНК, транскрипции ДНК, сплайсинга РНК, мышечного сокращения и транспорта частиц по микротрубочкам. Анализ в бесклеточных системах подразумевает полное разделение всех составляющих ее индивидуальных макромолекулярных компонентов и, в частности всех белков, входящих в систему. Методы разделения белков рассматриваются в последующих разделах.

В настоящее время хроматография является одним из методов, наиболее широко используемых для фракционирования белков. Наибольшее распространение получила распределительная хроматография.

Белки чаще всего разделяют методом хроматографии на колонках (колоночная хроматография). В этом случае смесь молекул в растворе пропускают через колонку, содержащую твердый пористый матрикс. В результате взаимодействия с матриксом различные белки проходят через колонку с различной скоростью. После того как разные белки достигнут в определенной последовательности дна колонки, их собирают отдельными фракциями. В настоящее время разработано и применяется множество матриксов различных типов, используя, которые можно делить белки согласно их заряду (ионообменная хроматография), гидрофобности (гидрофобная хроматография), размеру (хроматография гель-фильтрацией) или способности связываться различными химическими группами (аффинная хроматография).

На каждом, этапе колоночной хроматографии содержание белка в смеси увеличивается не более чем в 20 раз, и поэтому выделить из сложной смеси белков отдельный белок за один цикл практически невозможно. На долю каждого белка, как правило, приходится менее 1/1000 всего белка клетки, и для его очистки требуется последовательное использование нескольких различных типов колонок.

Страницы: 1 2 3 4

Статьи и публикации:

Электромагнитная картина мира
В XIX веке естественные науки накопили огромный эмпирический материал, нуждающийся в переосмыслении и обобщении. Многие полученные в результате исследований научные факты не совсем вписывались в устоявшиеся механические представления об о ...

Синтез сложных эфиров, катализируемый липазами
Синтез сложных эфиров монофункциональных спиртов, катализируемый липазами, с хорошими выходами протекает в микроэмульсиях. Липазы различной природы обладают разной специфичностью по отношению к длине алкильной цепи кислоты и к типу спирта ...

Промбриональный и эмбриональный периоды
Проэмбриональный (от греч. pro — до, embryon — зародыш) период в индивидуальном развитии организмов связан с образованием половых клеток в процессе гаметогенеза. Как отмечено выше, мужские половые клетки животных по своей структуре не име ...

Разделы