Генотерапия
Страница 1

Сравнивая гены, ученые смогут выявить связи разных генетических вариаций и мутаций со всевозможными заболеваниями.

Прогресс в познании человека привел к возникновению такого важного практического приложения геномики к медицине, как генотерапия. С ее помощью можно лечить многие наследственные заболевания, которые дифференцируются на моно- и полигенные.

Моногенные заболевания на молекулярном уровне сводятся к дефекту какого-либо одного белка в клетке — фермента транспортного или структурного белка. Во-первых, белка может не хватать, а, во-вторых, его функции могут быть нарушены. Так, мутация, в результате которой изменяется активность того или иного фермента, может приводить или к накоплению токсичного субстрата, или к дефициту соединения, необходимого для нормального функционирования клетки; мутация в гене, кодирующем структурный белок, — к серьезным нарушениям клеток, тканей или органов.

Кроме того, мутация в гене, экспрессирующемся в одной ткани, может сказаться самым серьезным образом на другой ткани и привести к появлению множества симптомов. Например, мутация в гене печеночного фермента фенилаланиндегидроксилазы, в результате которой блокируется превращение фенилаланина в тирозин, приводит к повышению уровня эндогенного фенилаланина в крови, неправильному формированию миелиновой оболочки вокруг аксонов нервных клеток ЦНС и, как следствие, — к тяжелой умственной отсталости.

Полигенность заболевания означает, что несколько белков в клетке обладают теми или иными дефектами. В каждой ткани организма экспрессируется свой набор из всей совокупности генов, но есть мутации, которые приводят к болезням, затрагивающим буквально все органы и ткани: мышцы, глаза, печень, кости, сердце и т.д. Отметим, что такие болезни, как рак и гипертония считаются полигенными. Некоторые ненаследственные и инфекционные болезни, в частности вирусной этиологии, также причисляются к полигенным.

Вполне естественно, что проведение генотерапии при моногенных заболеваниях показывает лучшие результаты. При этом ген, с которым ведется работа, должен быть не только картирован, но и идентифицирован (должна быть известна его функция). К настоящему времени картировано около одной тысячи генов, включенных в процесс возникновения и развития моногенных наследственных заболеваний, из которых идентифицировано всего несколько сотен.

При генотерапии требуются предварительное создание рекомбинантной генетической конструкции с нормальной "здоровой" копией дефектного гена, а также создание для этой конструкции вектора, переносящего ее в клетки организма. Для нормального функционирования гена необходимы специфические для каждого гена цис- и трансрегуляторные последовательности. Первые (цис) локализованы в той же хромосоме и могут быть непосредственно сцеплены с геном или находиться на некотором расстоянии от регулируемого ими гена, выступая в качестве промотора; нюрые (транс) располагаются в других хромосомах.

Методы введения генов в клетки-мишени при генотерапии весьма разнообразны, но в большинстве случаев недостаточно эффективны. Это связано с встраиванием чужеродной ДНК в геном только небольшого процента клеток ткани, а также с разрушением ее нуклеазами и т.д. Обнадеживающие результаты получены при использовании генов, "упакованных" в липосомы.

В настоящее время наиболее перспективным путем переноса генов при генотерапии является включение их в векторы, построенные на основе ретро- или аденовирусов. Конечно, здесь прежде всего возникает вопрос о безопасности подобных векторов. Вирусы генетически модифицируются так, чтобы при сохранении способности проникать в клетку они теряли бы способность к автономной репликации.

Для направленной доставки сконструированной последовательности учитывается различный тропизм разных вирусов к определенным видам тканей. Так, представители аденовирусов высокотропны в отношении клеток эпителия дыхательных путей, вирус герпеса высокотропен в отношении нейронов ЦНС и т.д. В перспективе планируется проводить генотерапию с помощью целых рекомбинантных хромосом, что позволяет оперировать рядом генов и их регуляторных последовательностей одновременно.

Страницы: 1 2

Статьи и публикации:

Что такое ГМО (трансгены)?
Генетически модифицированные организмы (трансгены, ГМО) – это организмы (бактерии, растения, животные), в которые были искусственно, невозможным в природе способом, внедрены гены других организмов. ГМО объединяют три группы организмов – ...

Общая информация о генетике
Генетика – это наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от уровня исследования различают молекулярную генетику, цитогенетику и другие. По объекту исследования бывает генетика микро ...

Регуляция биосинтеза белков
Биосинтез белков складывается из процессов непосредственного построения и модификации белковой молекулы, а также из «подготовительных» процессов: репликации генетического материала и его транскрипции. Репликация ДНК подробно рассматривае ...

Разделы