Мышцы – активная часть двигательного аппарата. Благодаря им, возможны: все многообразие движений между звеньями скелета (туловищем, головой, конечностями), перемещение тела человека в пространстве (ходьба, бег, прыжки, вращения и т. п.), фиксация частей тела в определенных положениях, в частности сохранение вертикального положения тела. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
С помощью мышц осуществляются механизмы дыхания, жевания, глотания, речи, мышцы влияют на положение и функцию внутренних органов, способствуют току крови и лимфы, участвуют в обмене веществ, в частности теплообмене. Кроме того, мышцы – один из важнейших анализаторов, воспринимающих положение тела человека в пространстве и взаиморасположение его частей.
В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин – 42% веса тела, у женщин – 35%, в пожилом возрасте – 30%, у спортсменов – 45-52%. Более 50% веса всех мышц расположено на нижних конечностях; 25-30% – на верхних конечностях и, наконец, 20-25% – в области туловища и головы. Нужно, однако, заметить, что степень развития мускулатуры у разных людей неодинакова. Она зависит от особенностей конституции, пола, профессии и других факторов. У спортсменов степень развития мускулатуры определяется не только характером двигательной деятельности. Систематические физические нагрузки приводят к структурной перестройке мышц, увеличению ее веса и объема. Этот процесс перестройки мышц под влиянием физической нагрузки получил название функциональной гипертрофии.
В зависимости от места расположения мышц их подразделяют на соответствующие топографические группы. Различают мышцы головы, шеи, спины, груди, живота; пояса верхних конечностей, плеча, предплечья, кисти; таза, бедра, голени, стопы. Кроме этого, могут быть выделены передняя и задняя группы мышц, поверхностные и глубокие мышцы, наружные и внутренние.
Строение мышцы.
Мышца – это орган, являющийся целостным образованием, имеющим только ему присущие строение, функцию и расположение в организме. В состав мышцы как органа входят поперечно-полосатая скелетная мышечная ткань, составляющая ее основу, рыхлая соединительная ткань, плотная соединительная ткань, сосуды, нервы. Основные свойства мышечной ткани – возбудимость, сократимость, эластичность – более всего выражены в мышце как органе.
Сократимость мышц регулируется нервной системой. И.М. Сеченов писал: «Мышцы суть двигатели нашего тела, но сами по себе, без толчков из нервной системы, они действовать не могут, поэтому рядом с мышцами в работе участвует всегда нервная система и участвует на множество ладов».
В мышцах находятся нервные окончания – рецепторы и эффекторы. Рецепторы – это чувствительные нервные окончания (свободные – в виде концевых разветвлений чувствительного нерва или несвободные – в виде сложно построенного нервно-мышечного веретена), воспринимающие степень сокращения и растяжения мышцы, скорость, ускорение, силу движения. От рецепторов информация поступает в центральную нервную систему, сигнализируя о состоянии мышцы, о том, как реализована двигательная программа действия, и т.п. В большинстве спортивных движений участвуют почти все мышцы нашего тела. В связи с этим нетрудно себе представить, какой огромный поток импульсов притекает в кору головного мозга при выполнении спортивных движений, как разнообразны получаемые данные о месте и степени напряжения тех или других групп мышц. Возникающее при этом ощущение частей своего тела, так называемое мышечно-суставное чувство, является одним из важнейших для спортсменов.
Эффекторы – это нервные окончания, по которым поступают импульсы из центральной нервной системы к мышцам, вызывая их возбуждение. К мышцам подходят также нервы, обеспечивающие мышечный тонус и уровень обменных процессов. Двигательные нервные окончания в мышцах образуют так называемые моторные бляшки. По данным электронной микроскопии, бляшка не прободает оболочку, а вдавливается в нее, между бляшкой и мышцей образуется контакт – синаптическая связь. Место входа в мышцу нервов и сосудов называют воротами мышц.
Каждая мышца имеет среднюю часть, способную сокращаться и называемую брюшком, и сухожильные концы (сухожилия), не обладающие сократимостью и служащие для прикрепления мышц.
Брюшко мышцы содержит различной толщины пучки мышечных волокон. Каждое мышечное волокно, кнаружи от сарколеммы, окутано соединительнотканной оболочкой – эндомизием, содержащей сосуды и нервы. Группы мышечных волокон, объединяясь между собой, образуют мышечные пучки, окруженные уже более толстой соединительнотканной оболочкой, называемой перимизием. Снаружи брюшко мышцы одето еще более плотным и прочным покровом, который называется фасцией. Она построена из плотной соединительной ткани и имеет довольно сложное строение. Соответственно новым данным (В.В. Кованов, 1961; А.П. Сорокин, 1973), фасции делят на рыхлые, плотные, поверхностные и глубокие. Рыхлые фасции формируются под действием незначительных сил тяги. Плотные фасции образуются обычно вокруг тех мышц, которые в момент их сокращения производят сильное боковое давление на окружающий их соединительнотканный футляр. Поверхностные фасции лежат непосредственно под подкожным жировым слоем, не расщепляются на пластинки и «одевают» все наше тело, образуя для него своеобразный футляр. Следует заметить, что футлярный принцип строения характерен для всех фасций и был подробно изучен Н.И. Пироговым. Глубокие (собственные) фасции покрывают отдельные мышцы и группы мышц, а также образуют влагалища для сосудов и нервов.
Статьи и публикации:
Классы электрических
сигналов
Электрические сигналы нервных клеток могут быть разделены на два основных класса. Во-первых, это локальные градуальные потенциалы, которые вызываются такими внешними стимулами, как свет, падающий на фоторецепторы глаза, звуковая волна, де ...
Этапы становления генетики
Явление наследственности требует для своей реализации существования специфических носителей наследственной информации, т.е. специфического генетического материала, который должен обладать способностью к ауторепродукции (репликации, редупл ...
Возможности генной инженерии
В последние годы для получения новых эффективных штаммов- продуцентов аминокислот стали применять новейшие методы биотехнологии. Методы генетической инженерии позволяют повышать количество генов биосинтеза путем их клонирования на плазмид ...