Адсорбция неионных ПАВ на гидрофильных поверхностях контролируется взаимодействием между поверхностью и полиоксиэтиленовой цепью. Если такое взаимодействие есть, адсорбция протекает аналогично адсорбции ионных ПАВ на гидрофильных поверхностях. На рис.11 схематично представлена адсорбция неионного ПАВ на поверхности кремнезема. Кроме того, в этой системе наблюдается поверхностная агрегация ПАВ при концентрациях, намного меньших KKM поверхностно-активного вещества. Концентрация, при которой начинается поверхностное агрегирование, называется критической концентрацией поверхностного агрегирования. Эта величина имеет порядок одной десятой ККМ. На рис.11 ось ординат имеет линейный масштаб и поэтому изотерма имеет другую форму, чем на рис.8. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Изотермы адсорбции, похожие по виду на изотерму на рис.11, указывают на высокую степень кооперативности адсорбции выше точки ККПА. Адсорбция в этом случае может быть описана как индуцированная поверхностью самоорганизация. Отметим, что для индуцирования самоорганизации достаточно даже слабого взаимодействия ПАВ с поверхностью.
На рис.12, а, б представлены изотермы адсорбции ряда неионных ПАВ типа CmEn на кремнеземе. Прежде всего видно, что адсорбция резко увеличивается задолго до KKM. Кроме того, отметим, что на изотермах адсорбции наблюдаются плато при концентрациях, близких к KKM НПАВ. Наконец, обратим внимание, что ступенчатый характер изотерм, указывающий на высокую кооперативность, особенно ярко проявляется в случае НПАВ с низким содержанием полиоксиэтиленовых фрогментов. Результаты, приведенные на рис.12, отчетливо указывают на то, что НПАВ образуют на поверхности дискретные структуры, аналогичные мицеллам. Размер таких агрегатов увеличивается с увеличением длины углеводородной цепи в молекулах НПАВ.
Рис.12. Корреляция между адсорбцией моноалкиловых эфиров полиэтиленгликолей на кремнеземе при 250C и величиной КПУ; съ-концентрация НПАВ в растворе
На рис.13 показаны изотермы адсорбции двух НПАВ, производных алкилфенолов, на кремнеземе, а именно, ОР-Е95 и NP-E9.5. Адсорбцию обоих НПАВ можно отразить одной кривой, если абсциссу представить в приведенных единицах. Отметим, что ход кривой аналогичен зависимостям, приведенным на рис.11 и 12. С помощью флуоресцентной спектроскопии было показано, что агрегаты НПАВ, образующиеся на поверхности, дискретны, т.е. при низких концентрациях на поверхности, не образуется монослой. Скорее поверхность покрыта отдельными агрегатами, и флуоресцентная метка обменивалась между ними с очень небольшими скоростями.
Рис.13. Адсорбция этоксилированных октилфенола и нонилфенола на кремнеземе. С разрешения. Copyright American Chemical Society
На рис.14 приведена изотерма адсорбция НПАВ - этоксилированных нонилфенолов - на каолине. Из рисунка следует, что адсорбция уменьшается с увеличением длины полиоксиэтиленовых цепей, т.е. по мере уменьшения КПУ. Это иллюстрирует тот факт, что поверхностное агрегирование более ярко выражено для НПАВ с небольшим числом оксиэтиленовых групп, что еще раз подчеркивает зависимость адсорбции ПАВ от свойств раствора: адсорбция увеличивается с увеличением КПУ поверхностно-активного вещества.
Рис. Адсорбция НПАВ на каолине при различной длине полиоксиэтиленовых цепей. При увеличении з увеличивается КПУ, что приводит к уменьшению адсорбции
Статьи и публикации:
Врожденный неспецифический (естественный) иммунитет.
Клеточный иммунитет
Это, прежде всего механические барьеры и физиологические факторы, которые препятствуют проникновению инфекционных агентов в организм: неповрежденная кожа, различные секреты, покрывающие эпителиальные клетки и предотвращающие контакт между ...
Пищеварение в двенадцатиперстной кишке. Строение поджелудочной железы.
Состав и свойства сока поджелудочной железы. Регуляция секреции поджелудочной
железы
Пища, поступившая в двенадцатиперстную кишку, подвергается действию поджелудочного сока, желчи и кишечного сока. Под влиянием этих соков происходит расщепление белков, жиров и углеводов. Химическое превращение в двенадцатиперстной кишке и ...
ДНК хранит огромные массивы информации
Израильские ученые разработали компьютер, который бьет все поставленные до сих пор рекорды миниатюризации ЭВМ. В обычную лабораторную пробирку поместится около триллиона таких машин. Нанокомпьютер - именно так называется этот аппарат - со ...