Микроэмульсии, особенно типа «вода в масле», представляют интерес в качестве сред для синтеза неорганических частиц очень малого размера. Этот интерес обусловлен тем, что свойства перспективных материалов критическим образом зависят от их микроструктуры. Контроль размера, распределения по размерам и морфологии отдельных зерен или кристаллитов чрезвычайно важен для получения материалов с заданными свойствами. Химические реакции в микроэмульсиях используют как один из возможных путей получения тонкодисперсных частиц. В таблице 1 приведены примеры областей, в которых используется микроэмульсионный метод получения наночастиц. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Принцип применяемого метода очень прост. В простейшем случае двух растворимых в воде, но не растворимых в масле реагентов один из реагентов растворяется в микрокаплях воды микроэмульсии «вода в масле», а второй — в микрокаплях воды другой микроэмульсии «вода в масле». Затем две микроэмульсии смешиваются. Вследствие очень малого размера капельки принимают участие в броуновском движении. Они непрерывно сталкиваются, образуя димеры и другие агрегаты. Такие агрегаты имеют короткое время жизни и быстро распадаются на капли первоначального размера. В результате непрерывно протекающих процессов коалесценции и самопроизвольного диспергирования содержимое микрокапель воды микроэмульсий А и В равномерно распределяется по всем каплям, в которых и протекает реакция. Продукт реакции в конечном счете выпадает в осадок.
Таблица 1. Использование микроэмульсионных методов для получения тонкодисперсных неорганических веществ
Применение наночастиц |
Примеры наночастиц |
Полупроводники |
CdS, CdSe |
Сверхпроводники |
Y-Ba-Cu, Bi-Pb-Sr-Ca-Cu |
Катализаторы |
Pt, Pd, Rh |
Магнитные частицы |
Fe или сплавы железа3, BaFe^Oip6 |
Большинство работ было выполнено с использованием в качестве поверхностно-активного компонента биссульфосукцината натрия, поскольку микроэмульсии типа «вода в масле», образованные этим ПАВ, устойчивы в широкой области составов и состоят из монодисперсных капель. Размер капель, рассчитанный из простых геометрических соображений, пропорционален молекулярному соотношению вода/ПАВ. Это было подтверждено экспериментально методами светорассеяния. Действительно, размер капель можно в первом приближении рассчитать по уравнению
где г — гидродинамический радиус в нм.
Таким образом, очевидно, что размер капель можно задавать весьма просто, изменяя Wo. При этом допускается, что изолированные капли воды контролируют рост частиц. На самом деле ситуация оказывается несколько сложнее, поскольку в результате роста первичных капель индуцируются вторичные процессы, оказывающие влияние на конечный размер частиц. К таким процессам относятся оствальдово созревание и флокуляция.
Ниже приведены два примера получения неорганических частиц в микроэмульсиях «вода в масле», а именно, получение сульфида кадмия и платины.
Получение частиц CdS
На рис. 16 приведена схема получения частиц CdS по реакции
Наночастицы CdS могут использоваться для создания полупроводников. При этом особенно важно, чтобы частицы были предельно малого размера, поскольку свойства материалов сильно зависят от размеров кристаллитов.
Статьи и публикации:
Особенности процесса репликации
Как и в случае биосинтеза других биополимеров, процесс репликации ДНК включает три этапа: инициацию, элонгацию и тер-минацию. Для репликации характерны следующие особенности:
1. Она осуществляется по полуконсервативному механизму, причем ...
Инфузория
- туфелька наиболее распространенный представитель, обитатель пресных водоемов, длина тела 0,3 мм. Форма тела постоянная и напоминает подошву туфли. Все тело равномерно покрыто ресничками, расположенными рядами, их больше 10 тысяч. Работа ...
Морфологические признаки
Размеры окуня в водоемах края обычно не превышают 20-25 см, максимально до 52 см. Тело овальной формы, сжато с боков, несколько горбатое. В большинстве случаев масса окуня не превышает 800-1200г, хотя отмечены случаи поимки более крупных ...