Симметричная сеть была введена как следующее улучшение, и в качестве примеры был приведен входной импеданс артериального древа организма в целом. Отсюда модно заключить, что в отношении входного импеданса, который "ощущается" левым желудочком, длина сегментов достаточно мала для интересующей нас области частот.
Недостаточное количество данных не позволяет приписать основные локальные значения модуля Юнга различным артериям, представленным в исходной модели. Поэтому в качестве рабочей гипотезы было принято, что среднее значение модуля Юнга можно использовать для всех артерий древа.
Измерения Бергеля, Лиройда и Тейлора показали, что модуль Юнга для различных артерий различен. К тому же модуль Юнга зависит от частоты и величины механических напряжений.
Поводя итог, модно сказать, что с точки зрения влияния на входной импеданс улучшения весьма малы. По-видимому, входной импеданс системы в целом совершенно нечувствителен к рукавному эффекту, симметричной сети или даже к упругому сужению. Также он не зависит практически от периферического сопротивления. [4]
В качестве примера вполне работоспособной модели второго класса с разбиением, близким к оптимальному, можно рассмотреть модель кровообращения, представленную на рисунке 1.
Рис.1. Блок-схема модели кровообращения
Обозначения на рисунке:
А - артерии, В - вены, К - капилляры, Ж - желудочек, П - предсердие, КС - каротидные синусы, ЯВ - яремные вены, ДА - дуга аорты, НА - нисуолящая аорта, ПА - подключичная артерия, ВВ - верхняя полая вена, ГВ и БВ - грудная и брюшная нижние полые вены.
Насосная функция сердца описывается уравнением:
Здесь Q - объемный кровоток на выходе желудочка
F - частота сердечных сокращений
K - сократительная способность сердца
C - диастолическая растяжимость желудочка
Pv - венозное давление на входе сердца
U - ненапряженный объем желудочка при P=0
Vo - свободный член статической аппроксимации Q=Q (Pv).
Экспоненциальные члены описывают динамику процесса с учетом гидравлического сопротивления атриовентрикулярных клапанов и длительности диастолы , причем
где a и b - константы. Объем крови Vi=Vi (t) для i-го участка системы задается уравнением баланса
Здесь Qi - алгебраическая сумма по j объемных скоростей кровообмена qij между i-м участком и всеми остальными, причем qij≡0, если j-ый участок непосредственно не сообщается с i-ым. В противном случае принимается, что
где Pi - суммарное давление крови на i-ом участке,
Ri - сопротивление кровотоку на этом участке.
В модели учитывается, что в некоторых периферических венах при падении давления сечение приобретает эллиптическую форму. Для этих сосудов принималось:
А для сосудов верхней половины тела:
Здесь - сопротивление сосуда в условиях, когда его объем равен Ui - ненапряженному объему;
- сопротивление сосуда при горизонтальном положении тела, когда объем сосуда равен
.
Зависимость трансмурального давления (давления, обусловленного упругостью сосудистой стенки) от рассматриваемых переменных имеет вид:
где - объемная податливость сосудов соответственно в области отрицательного, низкого положительного и высоко положительного давлений;
- параметр аппроксимации.
Статьи и публикации:
Нервная система
К нервной системе относятся спинной мозг, головной мозг и отходящие от них нервы. Нервная система связывает все системы организма в единое целое и обеспечивает связь организма с внешней средой.
В основе объединяющей функции нервной систе ...
Количество крови у животных. Кровяное депо.
Кровь циркулирует в замкнутой сосудистой сети, поэтому её объём должен соответствовать объёму сосудистого русла. Общий объём крови в организме является видовым признаком и обычно выражается в процентах от массы тела. Величина среднего объ ...
Обсуждени е результатов
Основными этапами исследования являлись: выращивание штамма экстремальных галофильных бактерий H. halobium на синтетической среде с [2, 3, 4, 5, 6-2Н5]фенилаланином (0.26 г/л), [3, 5-2H2]тирозином (0.2 г/л) и [2, 4, 5, 6, 7-2H5]триптофано ...