Биология » Модели системы кровообращения » Модели системы кровообращения

Модели системы кровообращения
Страница 1

Опыт математического моделирования систем кровообращения насчитывает уже несколько десятилетий, и некоторые из разработанных моделей с успехом применяются в клинической практике. Здесь, очевидно, наибольший интерес представляют модели системы кровообращения в целом, описывающие изменение основных параметров (давление, объем, кровоток) в различных точках системы и допускающие включение в модельные соотношения таких внешних факторов, как измененная весомость и перепад давлений по поверхности тела, обусловленный применением средств компенсации. [1]

Моделирование органов и структур человеческого организма дает возможность предсказать критические ситуации, выяснить механизмы формирования патологии, находить области допустимых изменений формы, механических свойств и характера функционирования этих биологических объектов. Это в свою очередь расширяет сферу применения диагностических методов и устройств и является предпосылкой для создания автоматизированных средств диагностики.

Модель - это объект любой природы, умозрительный или материально реализованный, который воспроизводит явление, процесс или систему с целью их исследования или изучения.

Моделирование - метод исследования явлений, процессов и систем, основанный на построении и изучении их математических или физических моделей

Математическое моделирование биологических объектов представляет собой аналитическое описание идеализированных процессов и систем, адекватных реальным.

Создание физических моделей основано на воспроизведении физическими способами биологических структур, их функций и процессов. При физическом моделировании решают вопросы выбора вида и параметров модели и устанавливают различные виды соответствия между моделью и биологическим объектом.

Модель дает значительно больше информации о биомеханике биологического объекта, чем можно получить современными средствами измерений. [2]

Большое количество различных моделей было разработано для того, чтобы достигнуть лучшего понимания характера соотношений между физическими явлениями, происходящими в артериальном русле человеческого организма, такими, как изменение давления, распространение волн в потоке, и собственными свойствами артерий, такими, как их радиус, толщина стенок, упругость, характер ветвлений, т.е. строением артериального древа как целого.

Весь спектр моделей кровообращения можно разделить на два основных класса. К первому из них относятся модели с распределенными параметрами, в которых рассматривается изменение параметров во времени в каждой точке моделируемого пространственного объекта. Однако, если говорить о моделировании системы кровообращения в целом, решение десятков уравнений в частных производных даже при современном уровне средств программирования и вычислительной техники, представляется крайне трудным и нецелесообразным.

Действительно, с точки зрения некоторых задач наиболее важным представляется аналитическое описание различий параметров между крупными участками системы, например, сосудистой системой мозга и аортой. В то же время тонкими механизмами распространения пульсовой волны явно можно пренебречь, в частности и потому, что для некоторых задач важны процессы с постоянными времени порядка 1с и более.

Второй класс моделей составляют модели с сосредоточенными параметрами, в которых описываемый объект разбивается на несколько участков, и предлагается, что внутри каждого из них все параметры изменяются только во времени, но не в пространстве. Математическая сторона проблемы при таком подходе существенно упрощается и сводится к решению системы алгебраических и обыкновенных дифференциальных уравнений. В то же время при правильном выборе способа разбиения системы на "точечные" участки не будут потеряны локальные особенности, существенные с точки зрения практики. Очевидно, например, что исследование гидростатических эффектов в нижней конечности невозможно, если она не разбита, по крайней мере, на два последовательных элемента, смещенных друг относительно друга вдоль направления вектора перегрузки.

Страницы: 1 2 3 4 5

Статьи и публикации:

Аллелопатия как форма транабиотических взаимоотношений растений: определение, классификация аллелопатических в-в., типология и механизмы действия колинов, критерии доказательства наличия явления алл
Аллеопатия – взаимоотношения м/у растениями, в которых ведущую роль играют специфически действующие продукты обмена веществ. К этим явлениям относится влияние растений друг на друга через вырабатываемые ими выделения. Ве-ва выделяемые на ...

Техника записи сигналов от нейронов с помощью электродов
Для решения некоторых задач существенно регистрировать активность одного нейрона или даже одного ионного канала, тогда как для других задач необходима суммарная активность многих нейронов. Ниже коротко суммируются основные приемы для запи ...

Основные принципы регуляции и функционирования клеток. Рецепторы, типы рецепторов
Клетка является сложной открытой динамической системой, содержащей множество входов и выходов. Рисунок 1. Системная модель клетки. Общие входы и выходы В процессе жизнедеятельности клетка выполняет две основные задачи: обеспечивает по ...

Разделы