Биология » Модели системы кровообращения » Модели системы кровообращения

Модели системы кровообращения
Страница 3

Существование периодического движения динамической системы доказывается либо экспериментально численным моделированием на ЭВМ, либо аналитически, в зависимости от вида функций Xji, Spq, Yipq. В случае, если эти функции нелинейны, аналитическое решение вопроса о существовании периодических движений затруднительно.

Анализ устойчивости стационарных движений динамической системы позволяет установить факт реальности модели, поскольку реальная система кровообращения имеет стационарные устойчивые движения и из экспериментов известны характер и диапазоны их устойчивости. Кроме того, исследование устойчивости необходимо при анализе систем управления в аппаратах искусственного или вспомогательного кровообращения, при исследовании режимов внутриаортальной контрпульсации и т.д. Устойчивость изолированного стационарного движения динамической системы понимается в смысле Ляпунова, ее исследование аналитическими методами в общем случае уравнений (1) - (3) затруднительно.

В процессе идентификации системы координат измерению доступен вектор

y* (

t) =

j (

A*, х* (

t)), (4)

зависящий от неизвестных параметров. Задача идентификации параметров системы кровообращения по измерениям (4), снимаемым с реального организма, ставится как задача определения параметров А модели (1) - (3) (а иногда дополнительно еще и параметров К и S), дающих наименьшее расстояние между y* (t) и соответствующими переменными

y (

t) =

j (

A,

x (

t)). (5)

При этом считается, что структура модели и объекта совпадают. Идентификация параметров проводилась различными методами: методом адаптивной идентификации, предложенным А.А. Красовским, методом прямого поиска, градиентными методами, методом наименьших квадратов по приспособленному базису и другими.

Требование идентичности, как правило, является глобальным и не исчерпывается идентичностью в одном заданном режиме (решение системы с фиксированными начальными условиями и параметрами). Проведенными машинными экспериментами было показано, что в системе (1) - (3) существуют режимы с неоднозначной идентификацией никоторых параметров. Поэтому перед проведением идентификации необходимо решить задачу идентифицируемости динамической системы в заданном режиме с заданной системой измерений (4), (5) либо задачу выбора системы измерений, на которых идентификация была бы идентификацией в целом.

Пусть Y

- множество графиков y (t) вектор-функций (5), G

- множество начальных условий для (1) в координатном n-мерном пространстве R

n, A

- множество параметров А. Для анализа наблюдаемости в отдельных режимах, глобальной (полной) наблюдаемости и идентифицируемости системы (1) - (5) разработаны методы и алгоритмы проверки биективности отображений Y

->G

, Y

->A

с помощью расчета ранга специально организованных матриц. [7]

В некоторых моделях обоих классов основное внимание обращается на свойство артериального русла преобразовывать входное прерывистое течение в более равномерное течение. Простейшей из таких моделей может служить модель "упругой камеры", в которой предполагается, что все флуктуации давления в артериях происходят синхронно. Эта модель, первоначально предложенная для определения ударного объема, модифицировалась много раз и недавно нашла новое применение при моделировании замкнутой сосудистой системы. Однако для исследования детального поведения самой артериальной системы упругая камера не пригодна, так как она не описывает распространение волн. Существенный недостаток модели упругой камеры привел к построению других моделей, в которых основное внимание уделялось трансмиссионным явлениям. Эти модели, также принадлежащие обоим классам, вначале были очень просты и состояли из однородных трубок с отражением на наружных концах. В своей основе модель упругой камеры и модель трубки считались взаимно исключающими.

Страницы: 1 2 3 4 5

Статьи и публикации:

Исследование процесса физиологической адаптации бактерий к тяжёлой воде
Изучен процесс физиологической адаптации различных бактериальных штаммов-продуцентов аминокислот, белков и нуклеозидов, относящимся к различным таксономическим группам микроорганизмов (факультативные и облигатные метилотрофные бактерии - ...

Общая ихтиология. Место рыб в системе животных
· Рыбы (и круглоротые) в системе животных занимают самое низкое место среди позвоночных. Они относятся к типу хордовых Chordata (благодаря наличию хорды–эластичного тяжа, являющегося у них начальным осевым скелетом, у большинства рыб заме ...

Ведение экскурсии
В плодовом саду обитает ряд насекомых, которых можно с успехом использовать в качестве экскурсионного материала. Конечно, на юге насекомых, развивающихся за счет плодовых деревьев, значительна больше, но и в нашем северном плодовом саду м ...

Разделы