Существование периодического движения динамической системы доказывается либо экспериментально численным моделированием на ЭВМ, либо аналитически, в зависимости от вида функций Xji, Spq, Yipq. В случае, если эти функции нелинейны, аналитическое решение вопроса о существовании периодических движений затруднительно. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Анализ устойчивости стационарных движений динамической системы позволяет установить факт реальности модели, поскольку реальная система кровообращения имеет стационарные устойчивые движения и из экспериментов известны характер и диапазоны их устойчивости. Кроме того, исследование устойчивости необходимо при анализе систем управления в аппаратах искусственного или вспомогательного кровообращения, при исследовании режимов внутриаортальной контрпульсации и т.д. Устойчивость изолированного стационарного движения динамической системы понимается в смысле Ляпунова, ее исследование аналитическими методами в общем случае уравнений (1) - (3) затруднительно.
В процессе идентификации системы координат измерению доступен вектор
y* (
t) =
j (
A*, х* (
t)), (4)
зависящий от неизвестных параметров. Задача идентификации параметров системы кровообращения по измерениям (4), снимаемым с реального организма, ставится как задача определения параметров А модели (1) - (3) (а иногда дополнительно еще и параметров К и S), дающих наименьшее расстояние между y* (t) и соответствующими переменными
y (
t) =
j (
A,
x (
t)). (5)
При этом считается, что структура модели и объекта совпадают. Идентификация параметров проводилась различными методами: методом адаптивной идентификации, предложенным А.А. Красовским, методом прямого поиска, градиентными методами, методом наименьших квадратов по приспособленному базису и другими.
Требование идентичности, как правило, является глобальным и не исчерпывается идентичностью в одном заданном режиме (решение системы с фиксированными начальными условиями и параметрами). Проведенными машинными экспериментами было показано, что в системе (1) - (3) существуют режимы с неоднозначной идентификацией никоторых параметров. Поэтому перед проведением идентификации необходимо решить задачу идентифицируемости динамической системы в заданном режиме с заданной системой измерений (4), (5) либо задачу выбора системы измерений, на которых идентификация была бы идентификацией в целом.
Пусть Y
- множество графиков y (t) вектор-функций (5), G
- множество начальных условий для (1) в координатном n-мерном пространстве R
n, A
- множество параметров А. Для анализа наблюдаемости в отдельных режимах, глобальной (полной) наблюдаемости и идентифицируемости системы (1) - (5) разработаны методы и алгоритмы проверки биективности отображений Y
->G
, Y
->A
с помощью расчета ранга специально организованных матриц. [7]
В некоторых моделях обоих классов основное внимание обращается на свойство артериального русла преобразовывать входное прерывистое течение в более равномерное течение. Простейшей из таких моделей может служить модель "упругой камеры", в которой предполагается, что все флуктуации давления в артериях происходят синхронно. Эта модель, первоначально предложенная для определения ударного объема, модифицировалась много раз и недавно нашла новое применение при моделировании замкнутой сосудистой системы. Однако для исследования детального поведения самой артериальной системы упругая камера не пригодна, так как она не описывает распространение волн. Существенный недостаток модели упругой камеры привел к построению других моделей, в которых основное внимание уделялось трансмиссионным явлениям. Эти модели, также принадлежащие обоим классам, вначале были очень просты и состояли из однородных трубок с отражением на наружных концах. В своей основе модель упругой камеры и модель трубки считались взаимно исключающими.
Статьи и публикации:
Отрицательные стороны.
Но мы рассмотрели только положительные стороны применения водорослей. Но это только вершина айсберга, существует другая противоположная сторона сожительства человека с водорослями.
По словам космонавта А. Сереброва (один из последних кос ...
Спорангии и спорогенез у древних высших растений
У многих древних высших растений спорангии образовывались верхушкой побега (как у мхов). Позже спорангии стали формироваться также на листьях, что и наблюдается почти у всех современных ныне живущих высших растений, за исключением мхов и ...
Строение, функции и возрастные особенности спинного мозга
Он расположен в позвоночном канале и представляет собой слегка уплощенный в переднезаднем направлении белый тяж длиной 40—45 см и толщиной около 1 см. В верхней своей части он переходит в продолговатый мозг, а в нижней оканчивается на уро ...